1,475 research outputs found

    Kinetics of crystallization of FeB-based amorphous alloys studied by neutron thermo-diffractometry

    Get PDF
    Kinetics of crystallization of two amorphous alloys, Fe70Cr10B20 and Fe80Zr10B10, have been followed up by neutron thermodiffractometry experiments performed in the two axis diffractometer D20 (ILL, Grenoble). The structural changes are directly correlated with the temperature dependence of the magnetization. Fe70Cr10B20 crystallizes following a two-step process: an eutectic crystallization of alfa-Fe (bcc) and the metastable tetragonal phase (Fe0.8Cr0.2)3B followed by another eutectic transformation to the stable phase (Fe0.75Cr0.25)2B and more segregation of alfa-Fe. These tetragonal phases are magnetically anisotropic, giving rise to a large increase of the coercivity. This behaviour is similar to that of Fe80B20 alloys, with Cr atoms replacing the Fe positions in both crystalline phases. Fe80Zr10B10 shows also a two-step process in which two polymorphic transformations take place.Comment: 3 pages. Proceedings International Workshop Non-Crystalline Solids 2006, Gijon (Spain

    Isotropic-nematic transition in hard-rod fluids: relation between continuous and restricted-orientation models

    Full text link
    We explore models of hard-rod fluids with a finite number of allowed orientations, and construct their bulk phase diagrams within Onsager's second virial theory. For a one-component fluid, we show that the discretization of the orientations leads to the existence of an artificial (almost) perfectly aligned nematic phase, which coexists with the (physical) nematic phase if the number of orientations is sufficiently large, or with the isotropic phase if the number of orientations is small. Its appearance correlates with the accuracy of sampling the nematic orientation distribution within its typical opening angle. For a binary mixture this artificial phase also exists, and a much larger number of orientations is required to shift it to such high densities that it does not interfere with the physical part of the phase diagram.Comment: 4 pages, 2 figures, submitted to PR

    Two charged strangeonium-like structures observable in the Y(2175)ϕ(1020)π+πY(2175) \to \phi(1020)\pi^{+} \pi^{-} process

    Full text link
    Via the Initial Single Pion Emission (ISPE) mechanism, we study the ϕ(1020)π+\phi(1020)\pi^{+} invariant mass spectrum distribution of Y(2175)ϕ(1020)π+πY(2175) \to \phi(1020)\pi^{+} \pi^{-}. Our calculation indicates there exist a sharp peak structure (Zs1+Z_{s1}^+) close to the KKˉK\bar{K}^\ast threshold and a broad structure (Zs2+Z_{s2}^+) near the KKˉK^\ast\bar{K}^\ast threshold. In addition, we also investigate the ϕ(1680)ϕ(1020)π+π\phi(1680) \to \phi(1020)\pi^{+} \pi^{-} process due to the ISPE mechanism, where a sharp peak around the KKˉK\bar{K}^\ast threshold appears in the ϕ(1020)π+\phi(1020)\pi^{+} invariant mass spectrum distribution. We suggest to carry out the search for these charged strangeonium-like structures in future experiment, especially Belle II, Super-B and BESIII.Comment: 7 pages, 5 figures. Accepted by Eur. Phys. J.

    Dispersion of a single hole in the t-J model

    Full text link
    The dispersion of a single hole in the t-J model obtained by the exact result of 32 sites and the results obtained by self-consistent Born approximation and the Green function Monte Carlo method can be simply derived by a mean-field theory with d-RVB and antiferromagnetic order parameters. In addition, it offers a simple explanation for the difference observed between those results. The presence of the extended van Hove region at (pi,0) is a consequence of the d-RVB pairing independenct of the antiferromagnetic order. Results including t' and t" are also presented and explained consistently in a similar way.Comment: LaTex file, 5 pages with 5 embedded eps figure

    Hybrid Stars in a Strong Magnetic Field

    Full text link
    We study the effects of high magnetic fields on the particle population and equation of state of hybrid stars using an extended hadronic and quark SU(3) non-linear realization of the sigma model. In this model the degrees of freedom change naturally from hadrons to quarks as the density and/or temperature increases. The effects of high magnetic fields and anomalous magnetic moment are visible in the macroscopic properties of the star, such as mass, adiabatic index, moment of inertia, and cooling curves. Moreover, at the same time that the magnetic fields become high enough to modify those properties, they make the star anisotropic.Comment: Revised version with updated reference

    Differential iron requirements for osteoblast and adipocyte differentiation

    Get PDF
    Bone marrow mesenchymal progenitor cells are precursors for various cell types including osteoblasts, adipocytes, and chondrocytes. The external environment and signals act to direct the pathway of differentiation. Importantly, situations such as aging and chronic kidney disease display alterations in the balance of osteoblast and adipocyte differentiation, adversely affecting bone integrity. Iron deficiency, which can often occur during aging and chronic kidney disease, is associated with reduced bone density. The purpose of this study was to assess the effects of iron deficiency on the capacity of progenitor cell differentiation pathways. Mouse and human progenitor cells, differentiated under standard osteoblast and adipocyte protocols in the presence of the iron chelator deferoxamine (DFO), were used. Under osteogenic conditions, 5μM DFO significantly impaired expression of critical osteoblast genes, including osteocalcin, type 1 collagen, and dentin matrix protein 1. This led to a reduction in alkaline phosphatase activity and impaired mineralization. Despite prolonged exposure to chronic iron deficiency, cells retained viability as well as normal hypoxic responses with significant increases in transferrin receptor and protein accumulation of hypoxia inducible factor 1α. Similar concentrations of DFO were used when cells were maintained in adipogenic conditions. In contrast to osteoblast differentiation, DFO modestly suppressed adipocyte gene expression of peroxisome-proliferating activated receptor gamma, lipoprotein lipase, and adiponectin at earlier time points with normalization at later stages. Lipid accumulation was also similar in all conditions. These data suggest the critical importance of iron in osteoblast differentiation, and as long as the external stimuli are present, iron deficiency does not impede adipogenesis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.Daniel F. Edwards III, Christopher J. Miller, Arelis Quintana-Martinez, Christian S. Wright, Matthew Prideaux, Gerald J. Atkins, William R. Thompson, and Erica L. Clinkenbear

    A framework for the local information dynamics of distributed computation in complex systems

    Full text link
    The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where "the whole is greater than the sum of the parts". We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.Comment: 44 pages, 8 figure
    corecore